Wiring the Tesla iBooster

Most Tesla iBoosters you can buy on eBay or elsewhere come without connectors. If you are lucky they do come with connectors and a bit of wiring. In that case you will still need to extend wires and attach them to your wiring loom. And where to connect which wire to what anyway? This article explains the ins and outs of wiring the Tesla iBooster into your car.

It becomes quite straightforward using the GEN1 connector kit and the GEN2 connector kit available from EVcreate with all connectors, terminals / crimp pins, seals and blind plugs. Moreover you will be able to fully integrate the iBooster into your wiring loom.

Stand alone mode: no CAN-BUS needed

The iBooster ECU has two CAN-BUS connections which are connected to the vehicle CAN and the Yaw sensor. Here these two are not used and instead of crimp pins, blind plugs are provided in the connector kits. Instead we rely on the ‘failsafe mode’ of the iBooster. In that mode the iBooster just uses the input from the travel pedal sensor to operate. Furthermore it requires 12V+ and GND inputs. Below it will be explained in more detail. It is possible to control the iBooster over CAN, we’ll dive into that in the future. Any input or experience on that is welcome.

To a large extent the wiring of the GEN1 and GEN2 is identical. Main difference is that the GEN2 no longer uses pin 17 for permanent 12V+ to the ECU and above all the travel sensor connector and it’s pin numbering is different. Below you will find detailed instructions for both.

GEN1 iBooster wiring

iBooster ECU connector wire insertion view
Wire insertion view
  • 1 = 12V+ permanent 40A fused
  • 2 = Pedal sensor 1
  • 8 = Pedal sensor 3
  • 9 = GND
  • 17 = 12V+ permanent 5A fused
  • 20 = 12V+ ignition 5A fused
  • 22 = Pedal sensor 2
  • 23 = Pedal sensor 4
iBooster pedal sensor connector
  1. ECU 2
  2. ECU 22
  3. ECU 8
  4. ECU 23

Recommended wire sizes

Firstly de main power pins (1 and 9) which are the largest terminals (4.8 spade) and are intended for 2,5 – 4 mm² wire (Tesla uses 4 mm2) and the seal included in the kit accepts an outer diameter of Ø3.4 – Ø3.7 mm. Secondly pin 17 (the additional 12V+ permanent) which is the medium terminal (2.8 spade) and is for 1,5 – 2,5 mm² wire and the seal is for Ø2.0 – Ø2.7 mm. Finally the small terminals (1.5 spade) for the 12V from the ignition and the pedal travel sensor accept 0.35 – 0.5 mm² wire and Ø1.6 – Ø1.9 for the seal. Unused entries can be closed off with the appropriate blind plugs.

GEN2 iBooster wiring

iBooster ECU connector wire insertion view
Wire insertion view
  • 1 = 12V+ permanent 40A fused
  • 2 = Pedal sensor 2
  • 8 = Pedal sensor 4
  • 9 = GND
  • 20 = 12V+ ignition 5A fused
  • 22 = Pedal sensor 1
  • 23 = Pedal sensor 3
GEN2 iBooster pedal sensor connector
  1. ECU 22
  2. ECU 2
  3. ECU 23
  4. ECU 8

Firstly identical to the GEN1, pin 1 and 9 are the large terminals (4.8 spade) and are intended for 2,5 – 4 mm² wire (Tesla uses 4 mm2) and the seal included in the kit accepts an outer diameter of Ø3.4 – Ø3.7 mm. The GEN2 iBooster does not use pin 17 (medium size terminal). Secondly the small terminals (1.5 spade) for the 12V from the ignition and the pedal travel sensor accept 0.35 – 0.5 mm² wire and Ø1.6 – Ø1.9 for the seal. Finally again, for unused entries the connector kit contains appropriate blind plugs.

iBooster power draw

Tesla uses a 40A fuse for the main power input and 5A for the ignition and in case of the GEN1 the secondary 12V permanent. For the GEN1 after switching the ignition off the current shortly still is 250 mA and then drops to 1,2 mA.

Blog series on power brakes

  1. Vacuum assisted power brakes
  2. Electric power brakes
  3. Installing the iBooster
  4. Wiring the Tesla iBooster
  5. Performance test of the Tesla iBooster
  6. CAN control of the iBooster

Disclaimer/warning that is not only valid for this article but applies in general.

It is the sole responsibility of the person or company selecting or installing any component or kit in any car modification or upgrade (like brakes, drivetrain, etcetera) to determine the suitability of the component or kit for that particular application. Especially when using parts or components that were not directly designed for use in that specific brand or model. If you are not sure how to safely use a part, component or kit, you should not install or use it. Do not assume anything. Inspiration and information found on this website, elsewhere or examples that others are using a part, component or kit does not guarantee proper installation or match with your particular setup.

 

Leave a Comment

Item added to cart.
0 items - 0,00
Join Waitlist We will inform you when the product arrives in stock. Please leave your valid email address below.